Appendix¶
Inverse interpolation¶
We consider an integration as follows:
If this integration has conditions that
\(w(\varepsilon_k)\) is sensitive to \(\varepsilon_k\) (e. g. the stepfunction, the delta function, etc.) and requires \(\varepsilon_k\) on a dense \(k\) grid, and
the numerical cost to obtain \(X_k\) is much larger than the cost for \(\varepsilon_k\) (e. g. the polarization function),
it is efficient to interpolate \(X_k\) into a denser \(k\) grid and evaluate that integration in a dense \(k\) grid. This method is performed as follows:
Calculate \(\varepsilon_k\) on a dense \(k\) grid.
Calculate \(X_k\) on a coarse \(k\) grid and obtain that on a dense \(k\) grid by using the linear interpolation, the polynomial interpolation, the spline interpolation, etc.
Evaluate that integration in the dense \(k\) grid.
The inverse interpolation method (Appendix of [2]) arrows as to obtain the same result to above without interpolating \(X_k\) into a dense \(k\) grid. In this method, we map the integration weight on a dense \(k\) grid into that on a coarse \(k\) grid (inverse interpolation). Therefore, if we require
we obtain
The numerical procedure for this method is as follows:
Calculate the integration weight on a dense \(k\) grid \(w_k^{\rm dense}\) from \(\varepsilon_k\) on a dense \(k\) grid.
Obtain the integration weight on a coarse \(k\) grid \(w_k^{\rm coarse}\) by using the inverse interpolation method.
Evaluate that integration in a coarse \(k\) grid where \(X_k\) was calculated.
All routines in libtetrabz
can perform the inverse interpolation
method; if we make \(k\) grids for the orbital energy (nge
) and the
integration weight (ngw
) different, we obtain \(w_k^{\rm coarse}\)
calculated by using the inverse interpolation method.
Double delta integration¶
For the integration
first, we cut out one or two triangles where \(\varepsilon_{n k} = \varepsilon_{\rm F}\) from a tetrahedron and evaluate \(\varepsilon_{n' k+q}\) at the corners of each triangles as
Then we calculate \(\delta(\varepsilon_{n' k+q} - \varepsilon{\rm F})\) in each triangles and obtain weights of corners. This weights of corners are mapped into those of corners of the original tetrahedron as
\(F_{i j}\) and \(\frac{S}{\nabla_k \varepsilon_k}\) are calculated as follows (\(a_{i j} \equiv (\varepsilon_i - \varepsilon_j)/(\varepsilon_{\rm F} - \varepsilon_j)\)):
When \(\varepsilon_1 \leq \varepsilon_{\rm F} \leq \varepsilon_2 \leq \varepsilon_3 \leq\varepsilon_4\) [Fig. 1 (a)],
\[\begin{split}\begin{align} F &= \begin{pmatrix} a_{1 2} & a_{2 1} & 0 & 0 \\ a_{1 3} & 0 & a_{3 1} & 0 \\ a_{1 4} & 0 & 0 & a_{4 1} \end{pmatrix}, \qquad \frac{S}{\nabla_k \varepsilon_k} = \frac{3 a_{2 1} a_{3 1} a_{4 1}}{\varepsilon_{\rm F} - \varepsilon_1} \end{align}\end{split}\]When \(\varepsilon_1 \leq \varepsilon_2 \leq \varepsilon_{\rm F} \leq \varepsilon_3 \leq\varepsilon_4\) [Fig. 1 (b)],
\[\begin{split}\begin{align} F &= \begin{pmatrix} a_{1 3} & 0 & a_{3 1} & 0 \\ a_{1 4} & 0 & 0 & a_{4 1} \\ 0 & a_{2 4} & 0 & a_{4 2} \end{pmatrix}, \qquad \frac{S}{\nabla_k \varepsilon_k} = \frac{3 a_{3 1} a_{4 1} a_{2 4}}{\varepsilon_{\rm F} - \varepsilon_1} \end{align}\end{split}\]\[\begin{split}\begin{align} F &= \begin{pmatrix} a_{1 3} & 0 & a_{3 1} & 0 \\ 0 & a_{2 3} & a_{3 2} & 0 \\ 0 & a_{2 4} & 0 & a_{4 2} \end{pmatrix}, \qquad \frac{S}{\nabla_k \varepsilon_k} = \frac{3 a_{2 3} a_{3 1} a_{4 2}}{\varepsilon_{\rm F} - \varepsilon_1} \end{align}\end{split}\]When \(\varepsilon_1 \leq \varepsilon_2 \leq \varepsilon_3 \leq \varepsilon_{\rm F} \leq \varepsilon_4\) [Fig. 1 (c)],
\[\begin{split}\begin{align} F &= \begin{pmatrix} a_{1 4} & 0 & 0 & a_{4 1} \\ a_{1 3} & a_{2 4} & 0 & a_{4 2} \\ a_{1 2} & 0 & a_{3 4} & a_{4 3} \end{pmatrix}, \qquad \frac{S}{\nabla_k \varepsilon_k} = \frac{3 a_{1 4} a_{2 4} a_{3 4}}{\varepsilon_1 - \varepsilon_{\rm F}} \end{align}\end{split}\]
Weights on each corners of the triangle are computed as follows [(\(a'_{i j} \equiv (\varepsilon'_i - \varepsilon'_j)/(\varepsilon_{\rm F} - \varepsilon'_j)\))]:
When \(\varepsilon'_1 \leq \varepsilon_{\rm F} \leq \varepsilon'_2 \leq \varepsilon'_3\) [Fig. 1 (d)],
\[\begin{align} W'_1 = L (a'_{1 2} + a'_{1 3}), \qquad W'_2 = L a'_{2 1}, \qquad W'_3 = L a'_{3 1}, \qquad L \equiv \frac{a'_{2 1} a'_{3 1}}{\varepsilon_{\rm F} - \varepsilon'_{1}} \end{align}\]When \(\varepsilon'_1 \leq \varepsilon'_2 \leq \varepsilon_{\rm F} \leq \varepsilon'_3\) [Fig. 1 (e)],
\[\begin{align} W'_1 = L a'_{1 3}, \qquad W'_2 = L a'_{2 3}, \qquad W'_3 = L (a'_{3 1} + a'_{3 2}), \qquad L \equiv \frac{a'_{1 3} a'_{2 3}}{\varepsilon'_{3} - \varepsilon_{\rm F}} \end{align}\]