物質科学のための計算数理 II Numerical Analysis for Material Science II

8th: Density Functional Theory (1) Nov. 30 (Fri)

Lecturer: Mitsuaki Kawamura (河村光晶)

Schedule (This semester W1, W2)

- 1. Sep. 28 (Fri) Guidance Y
- 2. Oct. 5 (Fri) Monte Carlo method O
- 3. Oct. 12 (Fri) Monte Carlo method O
- 4. Oct. 19 (Fri) Monte Carlo method O
- 5. Oct. 26 (Fri) Exact diagonalization Y
- 6. Nov. 2 (Fri) Exact diagonalization Y
- 7. Nov. 9 (Fri) Molecular dynamics O (1st report problem will be announced.)
- 8. Nov. 30 (Fri) Standard DFT code K
- 9. Dec. 7 (Fri) Density functional theory K
- 10. Dec. 14 (Fri) Density functional theory K
- 11. Dec. 21 (Fri) Density functional theory K
- 12. Dec. 25 (<u>Tue</u>) (2nd)Report problem K (遠隔講義室)
- 13. Jan. 11 (Fri) Density functional theory K

X Lecturers: Y ···· Yamaji, K ···· Kawamura, O···· Ohgoe

Schedule in this section (DFT)

- 1. Nov. 30 (Fri) Standard DFT code
 - First-principles calculation and Density functional theory (Lecture)
 - One-body Schrödinger eq. for periodic system and Bloch theorem (L)
 - Numerical solution of Kohn-Sham (one-body Schrödinger) eq. (L)
 - Hands-on DFT code (Tutorial)
 - Version control system : Git (T)
- 2. Dec. 7 (Fri) Kohn-Sham eq.
 - Plane-wave basis and Pseudopotentials (L)
 - Iterative eigenvalue solution method (L & T)
- 3. Dec. 14 (Fri) Self-Consistent loop
 - Hartree potential (Poisson eq.)
 - Brillouin-zone integral (Tetrahedron method)
 - Visualization (T)
- 4. Dec. 21 (Fri) Total Energy
 - Coulomb potential for periodic point charge (Ewald sum)
- 5. Dec. 25 (<u>Tue</u>) (2nd)Report problem K (遠隔講義室)
- 6. Jan. 11 (Fri) Density functional theory K

Today's Schedule

What is the first-principles study Density functional theory Kohn-Sham method Periodic system (Bulk crystal) **Bloch** theorem How to solve Kohn-Sham eq. with computer DFT code Git clone Charge density Band structure Fermi surface Density of states (DOS), Partial DOS

Electrons in materials

$$\left[-\sum_{n=1}^{N} \frac{\nabla_{n}^{2}}{2} + \frac{1}{2} \sum_{n,n'=1}^{N} \frac{1}{|\boldsymbol{r}_{n} - \boldsymbol{r}_{n'}|} + \sum_{n=1}^{N} \sum_{I=1}^{N} \frac{Z_{I}}{|\boldsymbol{r}_{n} - \boldsymbol{R}_{I}|}\right] \Psi(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \cdots, \boldsymbol{r}_{N}) = E \Psi(\{\boldsymbol{r}_{N}\})$$

Single H_2O molecule : N = 10Single C_{60} molecule : N = 360Bulk crystal, liquid, glass, •••• : $N > 10^{24}$

Both numerically and analytically unsolvable.

Information of electronic structure

- Charge density
- Magnetic moment
- Superconductivity
- Optical spectrum
- etc.

Can we obtain a few quantities such as

- Ground-state energy
- Ground-state charge density without solving this equation ?

7/27 Kohn-Sham method W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). $E_{univ}[\rho] = T_{KS}[\rho] + \frac{1}{2} \iint d^3r d^3r' \frac{\rho(r)\rho(r')}{|r-r'|} + E_{XC}[\rho]$ Kinetic energy of non-interacting system whose charge density is $\rho(\mathbf{r})$ $\left(-\frac{\nabla^2}{2} + v_{KS}[\rho](\boldsymbol{r})\right)\varphi_n(\boldsymbol{r}) = \varepsilon_n\varphi_n(\boldsymbol{r})$ $T_{KS} = 2\sum_{n=1}^{N/2} \int d^3r \,\varphi_n^*(\boldsymbol{r}) \left(-\frac{\nabla^2}{2}\right)\varphi_n(\boldsymbol{r})$ $\rho(\mathbf{r}) = 2 \sum_{n=1}^{N/2} |\varphi_n(\mathbf{r})|^2$ $v_{KS}[\rho](\mathbf{r}) = v(\mathbf{r}) + \int d^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + v_{XC}[\rho](\mathbf{r}) \qquad v_{XC}[\rho](\mathbf{r}) \equiv \frac{\delta E_{XC}[\rho]}{\delta \rho(\mathbf{r})}$ Self-consistent field (SCF) Approximate $E_{XC}[\rho]$ The exact form of $E_{XC}[\rho]$ is not known.

Local density approximation

 $E_{XC}[\rho] \approx E_{XC}^{LDA}[\rho] \equiv \int d^3r \rho(\mathbf{r}) \varepsilon_{XC}(\rho(\mathbf{r})) \quad \varepsilon_{XC}(\rho)$: Function (not functional)

$$v_{XC}[\rho](\boldsymbol{r}) \approx v_{XC}^{LDA}(\rho(\boldsymbol{r})) \equiv \frac{\delta E_{XC}^{LDA}[\rho]}{\delta \rho(\boldsymbol{r})} = \varepsilon_{XC}(\rho(\boldsymbol{r})) + \rho(\boldsymbol{r}) \frac{d\varepsilon_{XC}(\rho)}{d\rho} \Big|_{\rho=\rho(\boldsymbol{r})}$$

 $\varepsilon_{XC}(\rho)$: Use the XC energy of homogeneous-electron gas

Random phase approximation : $\varepsilon_{XC}(\rho) = -\frac{0.916}{r_s} + 0.0622 \ln r_s - 0.0938$ M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 (1957). $\frac{4\pi}{3}r_s^3 = \frac{1}{\rho}$ Monte-Carlo method

 $\varepsilon_{XC}(\rho) = -\frac{0.916}{r_s} + 0.031 \ln r_s - 0.0480 - 0.0116 r_s + 0.0020 r_s \ln r_s \ (r_s < 1)$ [Monte-Carlo] D. M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980). [Parameterize] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

 $\varepsilon_{XC}(\rho, |\nabla \rho|)$: Generalized gradient correction (GGA)

Total energy and force

$$E_{tot} = \int d^3 r_1 \cdots \int d^3 r_N \Psi^*(\{\boldsymbol{r}_N\}) \left[\sum_{n=1}^N \left(\frac{\overline{V}_n^2}{2} + V(\boldsymbol{r}_n; \{\boldsymbol{R}_{Natom}\}) \right) + \frac{1}{2} \sum_{n,n'=1}^N \frac{1}{|\boldsymbol{r}_n - \boldsymbol{r}_{n'}|} \right] \Psi(\{\boldsymbol{r}_N\}) + \frac{1}{2} \sum_{I,J=1}^N \frac{Z_I Z_J}{|\boldsymbol{R}_I - \boldsymbol{R}_J|}$$
 Nuclear-nuclear interaction

Finding the lowest-energy (stable) structure

Structure optimization : One of the most popular usage of DFT

$$\boldsymbol{F}_{I} \equiv \frac{\partial E_{tot}}{\partial \boldsymbol{R}_{I}} = \int d^{3}r_{1} \cdots \int d^{3}r_{N} \Psi^{*}(\{\boldsymbol{r}_{N}\}) \sum_{n=1}^{N} \frac{\partial v(\boldsymbol{r}_{n};\{\boldsymbol{R}_{Natom}\})}{\partial \boldsymbol{R}_{I}} \Psi(\{\boldsymbol{r}_{N}\})$$
Hellman-Feynmann theorem
$$+ \sum_{n=1}^{N_{atom}} \frac{Z_{I}Z_{J} (\boldsymbol{R}_{I} - \boldsymbol{R}_{J})}{|\boldsymbol{R}_{n} - \boldsymbol{R}_{n}|^{3}}$$

J=1

I

N]

Structure optimization

10/27

GGA-PBE functional : J. Perdew, K. Burke, and M. Ernzerhof Phys. Rev. Lett. 77, 3865 (1996)

	1.07		! !	!	Ţ	ļ	ļ	Ţ	Ţ	ļ	ļ	Ţ	÷	ļ	ļ	ļ	Ţ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	!	!		ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	<u> </u>	ļ	ļ	1
	1.06	-																																					-	-
tant	1.05	-																																					-	-
suos	1.04	\vdash																																					-	{
ice o	1.03	-																																	+				-	
Latt	1.02	-	+					+						+									+							+									-	{
o of	1.01	F				+			+		+				+	+	+				+	+		+	+	+	+					+					+	+	-	-
Rati	1			+			_			-								_	-		_	_					-		_		-	_	+	+					-	╞─
	0.99	- ·	ł		+		+											+		+								+	Ť		+					+			-	-
	0.98		i i	i	i	i	i	i_	i	i	i	i	i	i	i	i	i	i	i	i	i	i	i	i	i	i	Í	i	i	i	i	i	i	i	i	i	i	i	i .]
			u(FCC)	a(BCC)	e(HCP)	ii(RHL)	a(FCC)	d(HCP)	s(BCC)	u(FCC)	a(ORC)	f(HCP)	g(RHL)	n(TET)	r(FCC)	((BCC)	a(HCP)	g(HCP)	o(BCC)	a(BCC)	o(BCC)	s(HCP)	b(FCC)	d(FCC)	t(FCC)	o(BCC)		U(HCP)	c(HCP)	n(TET)	r(FCC)	a(BCC)	c(HCP)	i(HCP)	I(HCP)	/(BCC)	V(BCC)	((HCP)	(HCP)	(ארג
	~	ť '	4 4	ä	ä	8	Ũ	Ŭ	Ũ	ō	ö	Τ	Ĭ	_	_	-	Ľ	ž	ž	ž	ž	Ő	Р	ď	Δ.	R Q	2 a	2	Š	S	S	Ĕ	Ĕ	F	Н	_	\leq		7 r	7

Other usage : Formation (Cohesive) energy

 $A + B \rightarrow C + Energy \quad E_C - (E_A + E_B)$

Magnetic moment (Spin density functional theory) : $E[n_{\uparrow}, n_{\downarrow}]$

Kohn-Sham eq. for periodic system (1)

$$\begin{pmatrix} -\frac{\nabla^2}{2} + v_{KS}(r) \end{pmatrix} \varphi(r) = \varepsilon \varphi(r) \\ i.e., v_{KS}(r + n_1a_1 + n_2a_2 + n_3a_3) = v_{KS}(r) \\ unit lattice vectors \\ (Not unique) \\ N \times N_{uc}/2 \end{pmatrix}$$

 $\rho(\mathbf{r}) = 2 \sum_{n=1}^{\infty} |\varphi_n(\mathbf{r})|^2 \qquad \begin{array}{l} N \text{ electrons per unit cell} \\ N_{uc} \text{ cells} \to \infty \end{array}$

Equation to solve in the whole region of bulk crystal

n=1

Kohn-Sham eq. for periodic system (2)

12/27

^{13/27} One-body energy level

$$\left(-\frac{(\boldsymbol{\nabla}+i\boldsymbol{k})^2}{2}+v_{KS}(\boldsymbol{r})\right)u_{n\boldsymbol{k}}(\boldsymbol{r})=\varepsilon_{n\boldsymbol{k}}u_{n\boldsymbol{k}}(\boldsymbol{r})$$

 $\varepsilon_{nk} \neq \text{True quasi-particle energy}$

Qualitative analyzation

- Angle resolved photo electronic spectroscopy
- de Haas-van Alphen oscillation

Unit [eV]	LDA	GW	Exp.	
Si	0.54	1.32	1.17	
LiCI	6.07	9.34	9.40	
AIP	1.52	2.59	2.50	
AIAs	1.25	2.15	2.23	
AISb	0.99	1.64	1.68	
GaP	1.82	2.55	2.39	
GaAs	0.37	1.22	1.52	
InP	0.57	1.44	1.42	

X. Zhu and S. Louie, Phys. Rev. B 43, 14142 (1991).

How to solve Kohn-Sham eq. : Basis

$$\left(-\frac{(\boldsymbol{\nabla}+i\boldsymbol{k})^2}{2}+\boldsymbol{v}_{KS}(\boldsymbol{r})\right)\boldsymbol{u}_{n\boldsymbol{k}}(\boldsymbol{r})=\varepsilon\boldsymbol{u}_{n\boldsymbol{k}}(\boldsymbol{r})$$

$$u_{nk}(\mathbf{r}) \rightarrow u_{nk}(\mathbf{r}_i)$$

Huge numerical cost ! Not efficient.

- Pseudopotential (plane wave, real space grid, FEM)
- Local basis (atomic orbital, Gaussian)
- Augmented wave (complicated basis)
- Mixed basis (PW + Local, augmented + Local)

$$u_{n\boldsymbol{k}}(\boldsymbol{r}) = \sum_{\alpha} \tilde{u}_{n\boldsymbol{k}\alpha} \, \chi_{\alpha}(\boldsymbol{r})$$

$$u_{nk}(\mathbf{r}) = \sum_{G} \tilde{u}_{nk}(G) \frac{e^{i\mathbf{G}\cdot\mathbf{r}}}{\sqrt{V_{uc}}}$$

Plane waves below the Cutoff frequency

$$\left(-\frac{(\boldsymbol{G}+\boldsymbol{k})^2}{2}+\hat{v}_{KS}\right)\tilde{u}_{n\boldsymbol{k}}(\boldsymbol{G})=\varepsilon\tilde{u}_{n\boldsymbol{k}}(\boldsymbol{G})$$

$$\hat{v}_{KS}\tilde{u}_{nk}(\boldsymbol{G}) = \int_{uc} d^3r \frac{e^{-i\boldsymbol{G}\cdot\boldsymbol{r}}}{\sqrt{V_{uc}}} v_{KS}(\boldsymbol{r}) u_{nk}(\boldsymbol{r})$$

15/27 Pseudopotential Electronic state at core level (e.g. 1s state for Fe) hardly affects the chemical properties (chemical reaction, conduction, superconductivity, etc.) $u_n(r)$ **Pseudopotential** is generated in the calculation of single atom $u_{n,ps}(r)$ Pseudo True \mathcal{E}_n alence 2p Then, used for the calculation of molecule, solid, etc. v(r) $v_{ps}(r)$ S only reproduce the Transferability energy and long-range behavior Norm conserving of valence state. Ultrasoft

Similar to the potential of an ion.

Projector augmented wave

```
16/27
```

QuantumESPRESSO: plane wave and pseudopotential based code

Before the explanation, we should start to install because it takes long time.

mac OSX in ECCS

```
$ mkdir -p ~/bin/
$ echo 'export PATH=$HOME/bin:$PATH' >> ~/.profile
$ git clone https://gitlab.com/QEF/q-e.git -b qe-6.3 ~/q-e
$ cd ~/q-e/
$ ./configure CC=gcc-8; make pw pp; cp bin/* ~/bin/
```

Prompt. We do not need type this.

^{17/27} Quantum ESPRESSO

Web page : <u>https://www.quantum-espresso.org/</u> Developer : P Giannozzi (University of Udine, Italy), *et al.* (Many) Language : Fortran (Mainly)

Feature:

- Total energy, force, MD, chemical reaction path, charge/spin density
- Band structure, density of states, Fermi surfaces
- LDA, GGA, Van der Waals, exact exchange functional
- MPI+OpenMP parallelism, GPGPU
- Phonon and electron-phonon interaction
- X-ray absorption spectra, Optical spectra
- Many-body perturbation theory (GW, Bethe-Salpeter eq.)
- Wannier function, Berry's phase
- Etc.

Manuals : <u>https://www.quantum-espresso.org/resources/users-manual</u> Pseudopotential library

- SSSP (<u>https://www.materialscloud.org/discover/sssp/table/efficiency</u>)
- PSLibrary (<u>https://www.quantum-espresso.org/pseudopotentials</u>)

^{18/27} Visualization tools

FermiSurfer : Fermi-surface viewer

- \$ git clone https://scm.osdn.net/gitroot/fermisurfer/fermisurfer.git -b 1.10.1 ~/fermisurfer
- \$ cd ~/fermisurfer/
- \$ touch Makefile.in aclocal.m4 configure
- \$./configure --prefix=\$HOME; make; make install

VESTA : Crystal-structure viewer (Also charge density, etc.)

```
$ wget https://jp-minerals.org/vesta/archives/3.4.5/VESTA.dmg
$ hdiutil mount VESTA.dmg
$ cp -rf /Volumes/VESTA/VESTA ~/
$ echo 'alias vesta="open -a $HOME/VESTA/VESTA.app"' >> ~/.profile
$ source ~/.profile
```

^{19/27} Tutorial : MgB₂

\$ wget https://osdn.net/projects/educational-pwdft/storage/113018.tgz
\$ tar xzvf 113018.tgz -C ~/
\$ cd ~/113018/

\$ vesta mgb2.xsf

Metal

- Superconductivity : $T_C = 39$ K
- Stacked Mg triangular lattice and B honeycomb lattice

Structure optimization & input file

Input-file format

	Init lattice vectors (Å unit
CELL_PARAMETERS angstrom	
3.200000 0.000000 0.000000	Floment
-1.600000 2.771281 0.000000	Element
0.000000 0.000000 3.700000	
ATOMIC SPECIES	
B 10.811000 b_pbe_v1.4.uspp.F.UPF ←	
Mg 24.305000 Mg.pbe-n-kjpaw_psl.0.3.0.UPF	i seudopotential me name
ATOMIC_POSITIONS crystal	Atomia position in the
Mg 0.000000 0.000000 0.000000	Atomic position in the
B 0.333333 0.666667 0.500000 ሩ	fractional coordinate
B 0.666667 0.333333 0.500000	$R = x_1 a_1 + x_2 a_2 + x_2 a_3$
K_POINTS automatic	
12 12 8 0 0 0	

k-mesh for numerical integration in

$$\rho(\mathbf{r}) = 2 \frac{1}{V_{BZ}} \int_{BZ} d^3k \sum_{n=1}^{\infty} |u_{n\mathbf{k}}(\mathbf{r})|^2 \,\theta(\varepsilon_{\rm F} - \varepsilon_{n\mathbf{k}})$$

Dense k-mesh improves accuracy and increases numerical cost.

^{22/27} Result

<pre>\$ grep volume relax.out</pre>					
relax.out: unit-cell volum	ne	= 22	1.4261 (a.u.)	^3	
relax.out: new unit-cell v	/olume =	204.2230	4 a.u.^3 (30.26273	Ang^3)
relax.out: new unit-cell v	/olume =	193.5392	4 a.u.^3 (28.67956	Ang^3)
relax.out: new unit-cell v	/olume =	194.5001	6 a.u.^3 (28.82195	Ang^3)
relax.out: new unit-cell v	/olume =	194.3856	3 a.u.^3 (28.80498	Ang^3)
relax.out: new unit-cell v	/olume =	194.2566	1 a.u.^3 (28.78586	Ang^3)
relax.out: new unit-cell v	/olume =	194.2566	1 a.u.^3 (28.78586	Ang^3)
relax.out: unit-cell volum	ne	= 19	4.2566 (a.u.)	^3	
\$ grep -A 3 CELL_PARAMETERS re	elax.out				
CELL_PARAMETERS (angstrom)					
3.106677678 0.000000000	-0.0000000	90			
-1.553338839 2.690461490	0.0000000	90			
0.00000000 -0.00000000	3.62063839	95 t	xp. (XRD)		
:		2	a = 3.085 Å	c = 3.5	23 Å
		C		\sim	
CELL_PARAMETERS (angstrom)		١	/olume:29.	$04 A^{3}$	
3.072422829 0.00000000	0.0000000	90			
-1.536211414 2.660795917	0.0000000	90			
0.00000000 0.00000000	3.5211672	14			

^{23/27} Band structure

\$ mpirun -np 2 ~/bin/pw.x -npool 2 -in nonscf.in
\$ mpirun -np 2 ~/bin/bands.x -npool 2 -in bands.in
\$ gnuplot band.gp

\$ mpirun -np 1 ~/bin/pp.x -npool 1 -in pp.in
\$ vesta tmp.pp_K001_B00*.xsf

Density of states & Fermi surface

\$ mpirun -np 2 ~/bin/pw.x -npool 2 -in dense.in
\$ mpirun -np 2 ~/bin/projwfc.x -npool 2 -in pdos.in |tee pdos.out
\$ gnuplot pdos.gp

$$D(\varepsilon) = \frac{1}{V_{BZ}} \int_{BZ} d^3k \sum_{n=1}^{\infty} \delta(\varepsilon - \varepsilon_{nk})$$
$$D_p(\varepsilon) = \frac{1}{V_{BZ}} \int_{BZ} d^3k \sum_{n=1}^{\infty} \delta(\varepsilon - \varepsilon_{nk})$$
$$\times \left| \int d^3r \psi_p^*(\mathbf{r}) \varphi_{nk}(\mathbf{r}) \right|^2$$

Fermi surface : Isosurface at $\varepsilon_{nk} = \varepsilon_{\rm F}$

- \$ mpirun -np 1 ~/bin/fermi_proj.x -in proj_pz.in
 \$ mv proj.frmsf pz.frmsf
 \$ mpirun -np 1 ~/bin/fermi_proj.x -in proj_pxy.in
 \$ mv proj.frmsf pxy.frmsf
- \$ fermisurfer pz.frmsf

24/27

\$ fermisurfer pxy.frmsf

^{25/27} Why do we perform DFT calculation ?

Today's summary

- Basics of DFT calculation
 - Hohenberg–Kohn theorem
 - Kohn-Sham method
 - Exchange correlation functional
 - Total energy and force
- Kohn-Sham eq. in periodic system (bulk crystal)
 - Bloch theorem
 - Band structure
- Numerical method to solve Kohn-Sham eq.
 - Plane-wave (and other) basis
 - Pseudopotential
- Usage of a DFT code : Quantum ESPRESSO

Reference books

27/27

