8.1. 概要¶
本資料では, RESPACK と mVMC および HPhi++ を用いて, ダウンフォールディングをした格子モデルを計算する機能について説明する.
\[\begin{split}\begin{aligned}
{\cal H} &=
\sum_{R, R', i, j, \sigma}
\left(t_{(R'-R) i j} - t_{(R'-R) i j}^{\rm DC}\right)
c_{R' j \sigma}^{\dagger} c_{R i \sigma}
\nonumber \\
&+ \sum_{R, i}
U_{0 i j} n_{R i \uparrow} n_{R i \downarrow}
+ \sum_{(R, i) < (R', j)}
U_{(R'-R) i j} n_{R i} n_{R' j}
- \sum_{(R, i) < (R', j)}
J_{(R'-R) i j} (n_{R i \uparrow} n_{R' j \uparrow}
+ n_{R i \downarrow} n_{R' j \downarrow})
\nonumber \\
&+ \sum_{(R, i) < (R', j)}
J_{(R'-R) i j} (
c_{R i \uparrow}^{\dagger} c_{R' j \downarrow}^{\dagger}
c_{R i \downarrow} c_{R' j \uparrow} +
c_{R' j \uparrow}^{\dagger} c_{R i \downarrow}^{\dagger}
c_{R' j \downarrow} c_{R i \uparrow} )
\nonumber \\
&+ \sum_{(R, i) < (R', j)}
J_{(R'-R) i j} (
c_{R i \uparrow}^{\dagger} c_{R i \downarrow}^{\dagger}
c_{R' j \downarrow} c_{R' j \uparrow} +
c_{R' j \uparrow}^{\dagger} c_{R' j \downarrow}^{\dagger}
c_{R i \downarrow} c_{R i \uparrow} ),
\\
t_{0 i i}^{\rm DC} &\equiv \frac{1}{2}U_{0 i i} D_{0 i i}
+ \sum_{(R, j) (\neq 0, i)} U_{R i j} D_{0 j j}
- \frac{1}{2} \sum_{(R, j) (\neq 0, i)} J_{R i j} D_{0 j j},
\\
t_{R i j}^{\rm DC} &\equiv \frac{1}{2} J_{R i j} (D_{R i j} + 2 {\rm Re} [D_{R i j}])
-\frac{1}{2} U_{R i j} D_{R i j},
\quad (R, j) \neq (0, i),
\\
D_{R i j} &\equiv \sum_{\sigma}
\left\langle c_{R j \sigma}^{\dagger} c_{0 i \sigma}\right\rangle_{\rm KS}.
\end{aligned}\end{split}\]
8.1.1. 要件¶
QuantumESPRESSO もしくは xTAPP を用いてKohn-Sham軌道を用いたのちに, RESPACKでWannier関数, 誘電関数, 有効相互作用を計算し, それらを用いて構成した格子モデルを mVMC もしくは HPhi++ で計算する. したがってそれらのプログラムが使用可能である必要がある.