4.3.17. Flct_rand.dat¶
# inv_temp, N, N^2, D, D^2, Sz, Sz^2, step_i
0.0826564 12.00 144.00 0.00 0.00 0.0009345626081113 0.2500 1
0.1639935 12.00 144.00 0.00 0.00 0.0023147006319775 0.2500 2
0.2440168 12.00 144.00 0.00 0.00 0.0037424057659867 0.2500 3
...
135.97669 12.00 144.00 0.00 0.00 -0.0000000000167368 0.2500 1998
136.04474 12.00 144.00 0.00 0.00 -0.0000000000165344 0.2500 1999
File format¶
- Line 1: Header
- Lines 2-: [double01] [double02] [double03] [double04] [double05] [double06] [double07] [int01].
Parameters¶
[double01]
Type : Double
Description : Inverse temperature \(1/{k_{\rm B}T}\).
[double02]
Type : Double
Description : A total particle number \(\sum_{i} \langle \hat{n}_i \rangle\).
[double03]
Type : Double
Description : The expected value of the square of the particle number \(\langle (\sum_{i} \hat{n}_i)^2 \rangle\).
[double04]
Type : Double
Description : The expected value of doublon \(\frac{1}{N_s} \sum_{i}\langle n_{i\uparrow}n_{i\downarrow}\rangle\) (\(N_s\) is the total number of sites).
[double05]
Type : Double
Description : The expected value of the square of doublon \(\frac{1}{N_s}\langle ( \sum_{i} n_{i\uparrow} n_{i\downarrow})^2\rangle\) (\(N_s\) is the total number of sites).
[double06]
Type : Double
Description : The expected value of \(S_z\) \(\frac{1}{N_s} \sum_{i}\langle \hat{S}_i^z\rangle\) (\(N_s\) is the total number of sites).
[double07]
Type : Double
Description : The expected value of the square of \(S_z\) \(\frac{1}{N_s} \langle (\sum_{i} \hat{S}_i^z)^2\rangle\) (\(N_s\) is the total number of sites).
[int01]
Type : Int
Description : The number of operations of \((l-\hat{\mathcal H}/N_{s})\) for an initial wave function, where \(l\) is
LargeValue
defined in a ModPara file and \(N_{s}\) is the total number of sites.