4.3.17. Flct_rand.dat

(For the TPQ method) This file is outputted to show the calculation results of the fluctuation of the particle number, doublon, and \(S_z\) for the TPQ method. In the restart calculation, the values are added to the previous file. An example of the file format is as follows.
 # inv_temp, N, N^2, D, D^2, Sz, Sz^2, step_i
0.0826564 12.00 144.00 0.00 0.00 0.0009345626081113 0.2500 1
0.1639935 12.00 144.00 0.00 0.00 0.0023147006319775 0.2500 2
0.2440168 12.00 144.00 0.00 0.00 0.0037424057659867 0.2500 3
...
135.97669 12.00 144.00 0.00 0.00 -0.0000000000167368 0.2500 1998
136.04474 12.00 144.00 0.00 0.00 -0.0000000000165344 0.2500 1999

File name

  • Flct_rand??.dat

?? indicates the number of runs in the calculation of the TPQ method.

File format

  • Line 1: Header
  • Lines 2-: [double01] [double02] [double03] [double04] [double05] [double06] [double07] [int01].

Parameters

  • [double01]

    Type : Double

    Description : Inverse temperature \(1/{k_{\rm B}T}\).

  • [double02]

    Type : Double

    Description : A total particle number \(\sum_{i} \langle \hat{n}_i \rangle\).

  • [double03]

    Type : Double

    Description : The expected value of the square of the particle number \(\langle (\sum_{i} \hat{n}_i)^2 \rangle\).

  • [double04]

    Type : Double

    Description : The expected value of doublon \(\frac{1}{N_s} \sum_{i}\langle n_{i\uparrow}n_{i\downarrow}\rangle\) (\(N_s\) is the total number of sites).

  • [double05]

    Type : Double

    Description : The expected value of the square of doublon \(\frac{1}{N_s}\langle ( \sum_{i} n_{i\uparrow} n_{i\downarrow})^2\rangle\) (\(N_s\) is the total number of sites).

  • [double06]

    Type : Double

    Description : The expected value of \(S_z\) \(\frac{1}{N_s} \sum_{i}\langle \hat{S}_i^z\rangle\) (\(N_s\) is the total number of sites).

  • [double07]

    Type : Double

    Description : The expected value of the square of \(S_z\) \(\frac{1}{N_s} \langle (\sum_{i} \hat{S}_i^z)^2\rangle\) (\(N_s\) is the total number of sites).

  • [int01]

    Type : Int

    Description : The number of operations of \((l-\hat{\mathcal H}/N_{s})\) for an initial wave function, where \(l\) is LargeValue defined in a ModPara file and \(N_{s}\) is the total number of sites.