.. highlight:: none Dynamical Green’s function -------------------------- Using HPhi++, we can calculate a dynamical Green’s function .. math:: I(z) = \langle \Phi ' | \frac{1}{ {\mathcal H}- z\hat{I} } | \Phi '\rangle, where :math:`|\Phi ' \rangle = \hat{O} | \Phi _0 \rangle` is an excited state and :math:`\hat{O}` is an excitation operator defined as a single excitation operator .. math:: \sum_{i, \sigma_1} A_{i \sigma_1} c_{i \sigma_1} (c_{i\sigma_1}^{\dagger}) or a pair excitation operator .. math:: \sum_{i, j, \sigma_1, \sigma_2} A_{i \sigma_1 j \sigma_2} c_{i \sigma_1}c_{j \sigma_2}^{\dagger} (c_{i\sigma_1}^{\dagger}c_{j\sigma_2}). For example, the dynamical spin susceptibilities can be calculated by defining :math:`\hat{O}` as .. math:: \hat{O} = \hat{S}({\bf k}) = \sum_{j}\hat{S}_j^z e^{i {\bf k} \cdot \bf {r}_j} = \sum_{j}\frac{1}{2} (c_{j\uparrow}^{\dagger}c_{j\uparrow}-c_{j\downarrow}^{\dagger}c_{j\downarrow})e^{i {\bf k} \cdot \bf {r}_j}. There are two modes implemented in :math:`{\cal H}\Phi`. One is the continued fraction expansion method by using Lanczos method  [#]_ and the other is the shifted Krylov method [#]_ . See the reference for the details of each algorithm. .. [#] \E. Dagotto, Rev. Mod. Phys. **66**, 763-840 (1994). .. [#] \S.Yamamoto, T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, Journal of the Physical Society of Japan **77**, 114713 (2008).